Parallel distributed detection of feature trajectories in multiple discontinuous motion image sequences
نویسندگان
چکیده
Concerns the 3D interpretation of image sequences showing multiple objects in motion. Each object exhibits smooth motion except at certain time instants when a motion discontinuity may occur. The objects are assumed to contain point features which are detected as the images are acquired. Estimating feature trajectories in the first two frames amounts to feature matching. As more images are acquired, existing trajectories are extended. Both initial detection and extension of trajectories are done by enforcing pertinent constraints from among the following: similarity of the image plane arrangement of neighboring features, smoothness of the 3D motion and smoothness of the image plane motion. The constraints are incorporated into energy functions which are minimized using 2D Hopfield networks. Wrong matches that result from convergence to local minima are eliminated using a 1D Hopfield-like network. Experimental results on several image sequences are shown.
منابع مشابه
Automatic detection of liver tumor motion by fluoroscopy images
Background: A method to track liver tumor motion signals from fluoroscopic images without any implanted gold fiducial markers was proposed in this study to overcome the adverse effects on precise tumor irradiation caused by respiratory movement. Materials and Methods: The method was based on the following idea: (i) Before treatment, a series of fluoroscopic images corresponding to different bre...
متن کاملPseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملMotion-Based Object Detection and Tracking in Color Image Sequences
In this paper we present an algorithm for detecting objects in a sequence of color images taken from a moving camera. The first step of our algorithm is the estimation of motion in the image plane. Instead of calculating optical flow, tracking single points, edges or regions over a sequence of images, we determine the motion of clusters, built by grouping of pixels in a color/position feature s...
متن کاملMoving targets detection using sequential importance sampling
In this paper, we present a new technique for detecting moving targets from image sequences captured by moving sensors. Feature points are detected and tracked through the image sequences. A validity vector is used to describe the consistency of feature trajectories with sensor motion. By using the sequential importance sampling method, an approximation to the posterior distribution of the sens...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 7 3 شماره
صفحات -
تاریخ انتشار 1996